2.

1.1-1.3 Chapter 1

1. Find the slope of the line determined by points A(-1, 3)and B(4, 7).

- (A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $\frac{4}{5}$ (D) $\frac{5}{4}$ (E) $-\frac{4}{5}$

2. Find an equation for the line through the point P(3, -2)that is perpendicular to the line 3x + 2y = 5.

- (A) $y = -\frac{2}{3}x$
- (B) $y = -\frac{3}{2}x + \frac{5}{2}$
- (C) $y = \frac{2}{3}x 4$ (D) $y = \frac{3}{2}x \frac{13}{2}$

(E)
$$y = -\frac{5}{3}x + 3$$

Age (weeks) 6 Weight (pounds) 4.2 6.3 7.1 9.2 10.5

The table shows the growth of a certain puppy. Find the linear regression equation for the data. Use the linear regression equation to estimate the weight of the puppy at age 8 weeks, rounded to the nearest pound.

- (A) 13 pounds
- (B) 14 pounds
- (C) 15 pounds

- (D) 16 pounds
- (E) 17 pounds

4. Which of the following is an odd function?

- (A) $y = (x 5)^3$ (B) y = 2 + |x|
- (C) $y = x^5 \sqrt{x}$
- (D) $y = 2x^3 + 4x$ (E) $y = x^3 \cdot x^5$

5. Draw the graph of the function.

$$f(x) = \begin{cases} -2, & x < -2\\ x^2 - 2, & -2 \le x < 0\\ x - 2, & x \ge 0 \end{cases}$$

5. [-4, 4] by [-3, 3]

6. Which of the following exponential expressions is equivalent to 25^{4x} ?

- (A) 5^{6x} (B) 5^{8x}
- (C) 5^{10x} (D) 5^{12x} (E) 5^{14x}

7. Use a graph to solve the equation $3^{-x} = 7$.

- (A) $x \approx -2.33$
- (B) $x \approx -1.77$ (C) $x \approx 0.56$
- (D) $x \approx 1.77$ (E) $x \approx 2.33$

Chapter 1

DATE

NAME

1. Oraple the parametrized curve given by x = t - 2, $2 + \sqrt{5t}$, $0 \le t \le 4$. Indicate the direction in which the curve is traced.

2. Find a Cartesian equation for a curve that contains the parametrized curve given by

$$x = t - 2, y = -2 + \sqrt{5t}, 0 \le t \le 4.$$

(A)
$$y = -2 + \sqrt{5x + 10}$$
 (B) $y = -2 + \sqrt{5x}$

(C)
$$y = -2 + \sqrt{5x - 10}$$
 (D) $y = -2 + \sqrt{x + 2}$

(E)
$$y = 2 - \sqrt{x+2}$$

3. For $f(x) = x^2 - 3$, $x \le 0$, find $f^{-1}(x)$.

(A)
$$f^{-1}(x) = \sqrt{x+2}$$

(A)
$$f^{-1}(x) = \sqrt{x+2}$$
 (B) $f^{-1}(x) = -\sqrt{x+3}$

(C)
$$f^{-1}(x) = \sqrt{x-3}$$

(C)
$$f^{-1}(x) = \sqrt{x-3}$$
 (D) $f^{-1}(x) = -\sqrt{x-3}$

(E)
$$f^{-1}(x) = 3 - x$$

4. Let $f(x) = e^{x-1}$, $0 \le x \le 3$. Which of the following is a parametrization for the graph of $y = f^{-1}(x)$?

(A)
$$x = t, y = e^{t-1}, 0 \le t \le 3$$

(B)
$$x = t, y = 1 + \ln t, 0 \le t \le 3$$

(C)
$$x = e^{t-1}$$
, $y = t$, $0 \le t \le 3$

(D)
$$x = 1 + \ln t, y = t, 0 \le t \le 3$$

(E) $x = t, y = e^{1-t}, 0 \le t \le 3$

(E)
$$x = t, y = e^{1-t}, 0 \le t \le 3$$

5. Solve the equation $4^x + 4^{-x} = \frac{5}{2}$ algebraically.

(A)
$$x = \frac{1}{2}$$

(A)
$$x = \frac{1}{2}$$
 (B) $x = -\frac{1}{2}, x = \frac{1}{2}$

(C)
$$x = -1, x = 1$$

(C)
$$x = -1, x = 1$$
 (D) $x = -\frac{1}{2}, x = 0, x = \frac{1}{2}$

(E)
$$x = -1, x = 0, x = 1$$

6. Solve the equation $\sec x = \sqrt{2}$ in the interval $0 \le x \le 2\pi$.

(A)
$$x = -\frac{\pi}{4}, x = \frac{\pi}{4}$$
 (B) $x = \frac{\pi}{4}, x = \frac{3\pi}{4}$

(B)
$$x = \frac{\pi}{4}, x = \frac{3\pi}{4}$$

(C)
$$x = \frac{\pi}{4}, x = \frac{5\pi}{4}$$

(C)
$$x = \frac{\pi}{4}, x = \frac{5\pi}{4}$$
 (D) $x = \frac{3\pi}{4}, x = \frac{5\pi}{4}$

(E)
$$x = \frac{\pi}{4}, x = \frac{7\pi}{4}$$

Chapter 1

NAME

Directions: Show all steps leading to your answers, including any intermediate results obtained using a graphing utility. Use the back of the test or another sheet of paper if necessary.

1. Find the slope of the line determined by points A(8, -2)and B(2, 7).

(A)
$$\frac{2}{3}$$

(B)
$$-\frac{2}{3}$$

(C)
$$\frac{3}{2}$$

(A)
$$\frac{2}{3}$$
 (B) $-\frac{2}{3}$ (C) $\frac{3}{2}$ (D) $-\frac{3}{2}$ (E) -2

$$(E)$$
 $-$

2. Let L represent the line $y = \frac{3}{5}x + 7$. Write an equation for the line through P(6, -4) that is (a) parallel to L,

3. For the function $y = 5 - \sqrt{9 - x^2}$, (a) find the domain, (b) find the range, and (c) determine whether the function is odd, even or neither.

4. Let
$$f(x) = \begin{cases} -0.5x, & x < -2\\ \sqrt{x+2}, & x \ge -2 \end{cases}$$
.

- (a) Draw the graph of f(x).
- (b) Find the domain.
- (c) Find the range.

6. State the domain, range, and intercepts of the function $y = 2^{-x} - 1$.

8. Suppose that in any given year, the population of a certain endangered species is reduced by 25%. If the population is now 7500, in how many years will the population be 4000?

Chapter 1 (continued)

- (b) Find a Cartesian equation for the parametrized curve. What portion of the graph of the Cartesian equation is traced by the parametrized curve?
- (b) _____

11. Let $f(x) = \sqrt[3]{x+2}$ and $g(x) = x^3 - 2$.

11. _____

Which of the following are true?

- I. $g(x) = f^{-1}(x)$ for all real values of x.
- II. $(f \circ g)(x) = 1$ for all real values of x.
- III. The function f is one-to-one.
- (A) I and II
- (B) I and III
- (C) II and III

- (D) III only
- (E) I, II, and III
- 12. Let $f(x) = \sqrt{3 x}$. Find an expression for $f^{-1}(x)$. (Be sure to state any necessary domain restrictions.)
- 12. _____
- 13. The table gives Taiwan's nuclear power generation data in billions of kilowatt-hours. Let x = 5 represent 1980, x = 10 represent 1985, and so on.
- Year
 1980
 1985
 1990
 1995

 Energy produced
 7.8
 27.8
 31.6
 33.9
- (a) Find a natural logarithm regression equation for the data.
- (b) Predict when Taiwan's nuclear power generation will reach 40 billion kilowatt-hours.
- 14. An angle measuring $\frac{3\pi}{8}$ radians has its vertex at the center of a circle whose radius is 4 feet. Find the length of the subtended arc.
- 14. _____
- / 15. Let $y = 3 \sin(2x \pi) + 2$. Determine the period, domain, and range of the function.
- **16.** Solve the equation $\cot x = 4$ in the interval $0 \le x \le 2\pi$.
- 16. _____

4 Calculus Assessment

Chapter 1

NAME

Directions: Show all steps leading to your answers, including any intermediate results obtained using a graphing utility. Use the back of the test or another sheet of paper if necessary.

- 1. Find the slope of the line determined by points P(-3, 7)and Q(1, 13).

- (A) $\frac{2}{3}$ (B) $-\frac{2}{3}$ (C) $\frac{3}{2}$ (D) $-\frac{3}{2}$ (E) -2
- **2.** Let *L* represent the line $y = -\frac{4}{3}x + 2$. Write an equation for the line through P(9, -7) that is (a) parallel to L,
 - (b) perpendicular to L.
- 3. For the function $y = -2 + \sqrt{x^2 25}$, (a) find the domain, (b) find the range, and (c) determine whether the function is odd, even or neither.
- 4. Let $f(x) = \begin{cases} \sqrt{1-x}, & x \le 1\\ 0.5x 2, & x > 1 \end{cases}$
 - (a) Draw the graph of g(x).
 - (b) Find the domain.
 - (c) Find the range.

- 5. Let $f(x) = \frac{1}{x-2}$ and $g(x) = 5x^2$. Find formulas for (a) $f \circ g$ and (b) $g \circ f$.
- **6.** State the domain, range, and intercepts of the function $y = 9 - 3^x$.
- 7. Use a graph to solve the equation $2^{-x} 6 = 0$.
- 8. Suppose that in any given year, the value of a certain investment is increased by 15%. If the value is now \$15,000, in how many years will the value be \$21,000?
- 9. Find a parametrization for the right half of the parabola $y \neq x^2 + 6x - 7.$

- 2. (a) _____
- 3. (a) _____
- 4. (a) [-4, 4] by [-3, 3]
 - (b) _____
- 5. (a) _____
- **6.** Domain: _____ Range: ____ x-intercept(s): y-intercept(s): _____

- 9. _____

()

10. (a) Graph the parametrized curve described by $x = 2\cos t$, $y = -\sin t$, $0 \le t \le \pi$. Indicate the direction in which the curve is traced.

- (b) Find a Cartesian equation for the parametrized curve. What portion of the graph of the Cartesian equation is traced by the parametrized curve?

11. Let
$$f(x) = \frac{1}{x^2 + 2}$$
, $x > 0$, and $g(x) = \sqrt{\frac{1}{x} - 2}$. Which of the following are true?

11. _____

- I. $g(x) = f^{-1}(x)$ for all real values of x.
- II. $(g \circ f)(x) = x$ for all x > 0.
- III. The function *f* is one-to-one.
- (A) I and II
- (B) I and III
- (C) II and III

- (D) III only
- (E) I, II, and III
- **12.** Let $f(x) = -\sqrt{x} + 5$. Find an expression for $f^{-1}(x)$. (Be sure to state any necessary domain restrictions.)
- 12. _____
- 13. The table gives Sweden's nuclear power generation
 - 13. (a) _____ (b) data in billions of kilowatt-hours. Let x = 5 represent 1980, x = 10 represent 1985, and so on.

	1980	PROPERTY SECTION		
Energy produced	25.3	55.8	65.2	66.5

- (a) Find a natural logarithm regression equation for the data.
- (b) Predict when Sweden's nuclear power generation will reach 85 billion kilowatt-hours.
- 14. An angle measuring $\frac{5\pi}{6}$ radians has its vertex at the center of a circle whose radius is 7 meters. Find the length of the subtended arc.
- 15. Let $y = 5 \tan \left(x + \frac{\pi}{2}\right) 3$. Determine the period, domain, and range of the function.
- 15. Period: Domain:
- 16. Solve the equation $\sec x = -3$ in the interval $0 \le x \le 2\pi$.
- 16.

Range:

Assessment Answers

Chapter 1

Quiz: Sections 1.1-1.3

1. (C)

2. (C)

3. (B)

4. (D)

6. (B)

7. (B)

Quiz: Sections 1.4-1.6

2. (A)

3. (B)

4. (C)

5. (B)

6.(E)

Chapter 1 Test Form A

- 1. (D)
- **2.** (a) $y = \frac{3}{5}x \frac{38}{5}$ (b) $y = -\frac{5}{3}x + 6$
- 3. (a) [-3, 3]
- **(b)** [2, 5]
- (c) Even

- - **14.** $\frac{3\pi}{2}$ ft or about 4.71 ft
 - **15.** Period: π ; Domain: All reals; Range: [-1, 5]
 - $x = \pi + \tan^{-1}(0.25) \approx 3.387$

4. (a)

- (b) $(-\infty, \infty)$
- (c) $[0, \infty)$
- **5.** (a) $(f \circ g)(x) = \left(\frac{1}{x}\right)^2 + 5 \text{ or } \frac{1}{x^2} + 5$
 - **(b)** $(g \circ f)(x) = \frac{1}{x^2 + 5}$
- **6.** Domain: $(-\infty, \infty)$

Range: $(-1, \infty)$

x-intercept: 0

y-intercept: 0

- 7. $x \approx 1.262$
- 8. About 2.19 years
- **9.** One possible answer: x = t, $y = t^2 4t + 3$,
- 10. (a)

- **(b)** $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$; right half of ellipse
- 11. (B)
- 12. $f^{-1}(x) = 3 x^2, x \ge 0$
- **13.** (a) $y = -20.524 + 19.051 \ln x$
 - **(b)** $x \approx 23.971$ or about 24, in 1999

Chapter 1 Test Form B

- **2.** (a) $y = -\frac{4}{3}x + 5$ (b) $y = \frac{3}{4}x \frac{55}{4}$
- 3. (a) $(-\infty, -5] \cup [5, \infty)$
 - **(b)** [-2, ∞)
- (c) Even

- [-4, 4] by [-3, 3]
- (b) $(-\infty, \infty)$
- (c) $(-1.5, \infty)$
- 5. (a) $(f \circ g)(x) = \frac{1}{5x^2 2}$
 - **(b)** $(g \circ f)(x) = \frac{5}{(x-2)^2}$
- **6.** Domain: $(-\infty, \infty)$

Range: $(-\infty, 9)$

x-intercept: 2

y-intercept: 8

- 7. $x \approx -2.585$
- 8. About 2.41 years
- **9.** One possible answer: $x = t, y = t^2 + 6t 7$,
- 10. (a)

- **(b)** $\left(\frac{x}{2}\right)^2 + y^2 = 1$; lower half of ellipse
- 11. (C)
- 12. $f^{-1}(x) = x^2 5, x \le 0$
- **13.** (a) $y \approx -20.907 + 30.827 \ln x$
 - **(b)** $x \approx 31.05$ or about 31, in 2006
- 14. $\frac{35\pi}{6}$ m or about 18.33 m
- **15.** Period: π ; Domain: $x \neq k\pi$ for integers k; Range: All reals

16.
$$x = \cos^{-1}\left(-\frac{1}{3}\right) \approx 1.911$$
,

$$x = 2\pi - \cos^{-1}\left(-\frac{1}{3}\right) \approx 4.373$$